
2020-07-20

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math.

Prof. Hiren Patel, Ph.D.

Prof. Werner Deitl, Ph.D.

© 2020 by the above. Some rights reserved.

Code development
strategies

2
Code development strategies

Outline

• This is the second in a sequence of six topics on

– C assertions

– Code development strategies

– Testing

– Commenting your code

– Using print statements for debugging

– Using tracing for debugging

3
Code development strategies

Outline

• In this tutorial, we will:

– Describe how to start a project

– Using a skeleton framework

– Deal with assertions on the parameters

– Consider implementing helper functions

4
Code development strategies

Code skeletons

• Every project will involve you authoring various functions

– The project specifications will describe:

• The parameters and their types

• The return type

• The relationship between the parameters and what is returned

– That is, what is the function supposed to accomplish

• We will describe an approach that will be most beneficial

– We will build a skeleton for each function

– We will then check the parameters

– You will then author each function one at a time

2020-07-20

2

5
Code development strategies

Code skeletons

• The wrong approach to take is to:

– First write all of the functions

– Try to compile once you think everything is finished

6
Code development strategies

Code skeletons

• Instead, suppose you were asked to author:
int factorial(int n);

int binomial(int n, int k);

7
Code development strategies

Code skeletons

• Start with:
#include <iostream>

// Function declarations

int main();

int factorial(int n);

int binomial(int n, int k);

// Function definitions

int main() {

 return 0;

}

int factorial(int n) {

 return 0;

}

int binomial(int n, int k);

 return 0;

}

8
Code development strategies

Code skeletons

• In each case, we returned a default value: 0

• The most wonderful aspect of this code is:

It compiles!

– The next step is to implement and test one function at a time!

– Always make sure one function works before you start the next

2020-07-20

3

9
Code development strategies

Assertions on parameters

• The next step is to add any assertions on the parameters:
int factorial(int n) {

 assert(n >= 0);

 return 0;

}

10
Code development strategies

Helper functions

• Next, you can immediately think of additional functions you could
use in authoring your code,

 add them to your declarations and skeletons:

// Function declarations

int main();

int factorial(int n);

int binomial(int n, int k);

int falling_factorial(int n, int k);

// Function definitions

// ...insert other function definitions here...

int falling_factorial(int n, int k) {

 assert(k >= 0);

 return 0;

}

11
Code development strategies

Helper functions

• You may always, at all times,

 add any additional functions you may feel will simplify your life

• If you every cut-and-paste code, always ask yourself if it would be
better to split off the code and write a function

 You never need to ask
 “Can I write my own function?”
 “Can I add another function to my file?”

Just be sure to submit it!

12
Code development strategies

Another example

• Suppose you were asked to author both GCD and LCM functions
#include <iostream>

// Function declarations

int main();

int gcd(int m, int n);

int lcm(int m, int n);

// Function definitions

int main() {

 return 0;

}

int gcd(int m, int n) {

 return 0;

}

int lcm(int m, int n) {

 return 0;

}

2020-07-20

4

13
Code development strategies

Simple parameter operations

• Next, you may deduce from the project description that

 and that

 gcd , gcd ,m n m n

 gcd , 0m n

14
Code development strategies

Simple parameter operations

• Thus, we add an absolute-value function
#include <iostream>

// Function declarations

int main();

int gcd(int m, int n);

int lcm(int m, int n);

int abs(int n);

// Function definitions

// ...other function definitions go here...

int abs(int n) {

 if (n >= 0) {

 return n;

 } else {

 return –n;

 }

}

15
Code development strategies

Simple parameter operations

• We can now update our implementations:
int gcd(int m, int n) {

 m = abs(m);

 n = abs(n);

 assert((m >= 0) && (n >= 0));

 return 0;

}

int lcm(int m, int n) {

 m = abs(m);

 n = abs(n);

 assert((m >= 0) && (n >= 0));

 return 0;

}

16
Code development strategies

Easy first, or hard first?

• Next, focus on authoring one function at a time:

– If there is an easy one, do it first:

int lcm(int m, int n) {

 m = abs(m);

 n = abs(n);

 assert((m >= 0) && (n >= 0));

 return (m*n)/gcd(m, n);

}

2020-07-20

5

17
Code development strategies

Default return values

• Other skeletons depend on what is being returned:
void function_name_1(…) {

 return;

}

double function_name_2(…) {

 return 0.0;

}

char function_name_3(…) {

 return '\0';

}

bool function_name_4(…) {

 return false;

}

std::string function_name_5(…) {

 return "";

}

18
Code development strategies

Default return values

• Other skeletons depend on what is being returned:
void function_name_1(…) {

 return;

}

double function_name_2(…) {

 return 1.23456789;

}

char function_name_3(…) {

 return ' ';

}

bool function_name_4(…) {

 return true;

}

std::string function_name_5(…) {

 return "Bob's your uncle.";

}

19
Code development strategies

Summary

• Following this lesson, you now:

– Know to start with a code skeleton that compiles

– Check the parameters

• Make sure it compiles

– Consider adding helper functions

• Make sure it compiles

– Consider if it is appropriate to start with the easiest functions first

• Make sure it compiles—even if it doesn’t return the right answer

20
Code development strategies

References

[1] Wikipedia: https://en.wikipedia.org/wiki/Assert.h

[2] Cplusplus.com

 http://www.cplusplus.com/reference/cassert/

2020-07-20

6

21
Code development strategies

Acknowledgments

None so far.

22
Code development strategies

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

23
Code development strategies

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

